Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175519

RESUMO

We previously showed that SerpinA3K is present in urine from rats and humans with acute kidney injury (AKI) and chronic kidney disease (CKD). However, the specific role of SerpinA3K during renal pathophysiology is unknown. To begin to understand the role of SerpinA3K on AKI, SerpinA3K-deficient (KOSA3) mice were studied 24 h after inducing ischemia/reperfusion (I/R) and compared to wild type (WT) mice. Four groups were studied: WT+S, WT+IR, KOSA3+S, and KOSA3+IR. As expected, I/R increased serum creatinine and BUN, with a GFR reduction in both genotypes; however, renal dysfunction was ameliorated in the KOSA3+IR group. Interestingly, the increase in UH2O2 induced by I/R was not equally seen in the KOSA3+IR group, an effect that was associated with the preservation of antioxidant enzymes' mRNA levels. Additionally, FOXO3 expression was initially greater in the KOSA3 than in the WT group. Moreover, the increase in BAX protein level and the decrease in Hif1a and Vegfa induced by I/R were not observed in the KOSA3+IR group, suggesting that these animals have better cellular responses to hypoxic injury. Our findings suggest that SerpinA3K is involved in the renal oxidant response, HIF1α/VEGF pathway, and cell apoptosis.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Animais , Camundongos , Injúria Renal Aguda/metabolismo , Apoptose , Rim/metabolismo , Estresse Oxidativo , Insuficiência Renal Crônica/metabolismo , Traumatismo por Reperfusão/metabolismo
2.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498913

RESUMO

Preconditioning episodes of ischemia/reperfusion (IR) induce protection against acute kidney injury (AKI), however their long-term effect still unknown. We evaluated AKI to chronic kidney disease (CKD) transition, after three-mild or three-severe episodes of IR. AKI was induced by single bilateral IR (1IR), or three episodes of IR separated by 10-day intervals (3IR) of mild (20 min) or severe (45 min) ischemia. Sham-operated rats served as controls. During 9-months, the 1IR group (20 or 45 min) developed CKD evidenced by progressive proteinuria and renal fibrosis. In contrast, the long-term adverse effects of AKI were markedly ameliorated in the 3IR group. The acute response in 3IR, contrasted with the 1IR group, that was characterized by an increment in heme oxygenase-1 (HO-1) and an anti-inflammatory response mediated by a NFkB-p65 phosphorylation and IL-6 decrease, together with an increase in TGF-ß, and IL-10 expression, as well as in M2-macrophages. In addition, three episodes of IR downregulated endoplasmic reticulum (ER) stress markers expression, CHOP and BiP. Thus, repeated episodes of IR with 10-day intervals induced long-term renal protection accompanied with HO-1 overexpression and M2-macrophages increase.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Ratos , Animais , Heme Oxigenase-1 , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Insuficiência Renal Crônica/metabolismo , Rim/metabolismo , Isquemia/complicações , Anti-Inflamatórios/farmacologia , Heme/farmacologia
3.
Am J Physiol Renal Physiol ; 323(4): F425-F434, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35834275

RESUMO

We have previously reported that urinary excretion of serpin-A3 (uSerpA3) is significantly elevated in patients with active lupus nephritis (LN). Here, we evaluated the course of uSerpA3 during the first year of treatment and its association with response to therapy in patients with proliferative LN. The observational longitudinal study included 60 Mexican adults with proliferative LN followed during the first year after LN flare. uSerpA3 was detected by Western blot analysis at flare and after 3, 6, and 12 mo. The response to therapy was determined 1 yr after the LN flare. We evaluated the correlation between uSerpA3 and histological parameters at LN flare. The temporal association between uSerpA3 and response to therapy was analyzed with linear mixed models. uSerpA3 prognostic performance for response was evaluated with receiver-operating characteristic curves. Among the 60 patients studied, 21 patients (35%) were class III and 39 patients (65%) were class IV. uSerpA3 was higher in class IV than in class III LN (6.98 vs. 2.89 dots per in./mg creatinine, P = 0.01). Furthermore, uSerpA3 correlated with the histological activity index (r = 0.29, P = 0.02). There was a significant association between the temporal course of uSerpA3 and response to therapy. Responders showed a significant drop in uSerpA3 at 6 mo compared with LN flare (P < 0.001), whereas nonresponders persisted with elevated uSerpA3. Moreover, uSerpA3 was significantly lower at flare in responders compared with nonresponders (2.69 vs. 6.98 dots per in./mg creatinine, P < 0.05). Furthermore, uSerpA3 was able to identify nonresponders since 3 mo after LN flare (area under the curve: 0.77). In conclusion, uSerpA3 is an early indicator of kidney inflammation and predictor of the clinical response to therapy in patients with proliferative LN.NEW & NOTEWORTHY LN requires aggressive immunosuppression to improve long-term outcomes. Current indicators of remission take several months to normalize, prolonging treatment regiments in some cases. Serpin-A3 is present in urine of patients with proliferative LN. We evaluated the excretion of serpin-A3 in serial samples of patients with proliferative LN during the first year after flare. We found that uSerpA3 correlates with kidney inflammation and its decline at early points predicts the response to therapy 1 yr after flare.


Assuntos
Nefrite Lúpica , Serpinas , Adulto , Biomarcadores/urina , Creatinina/urina , Humanos , Inflamação , Estudos Longitudinais , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/tratamento farmacológico , Serpinas/urina , alfa 1-Antiquimotripsina/uso terapêutico
4.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269715

RESUMO

Acute kidney injury (AKI) is a public health problem worldwide. Sirtuins are a family of seven NAD+-dependent deacylases, Overexpression of Sirtuin 1, 3, and 5 protect against AKI. However, the role of Sirtuin 7 (Sirt7) in AKI is not known. Here, we analyzed how Sirt7 deficient mice (KO-Sirt7) were affected by AKI. As expected, wild-type and Sirt7 heterozygotes mice that underwent renal ischemia/reperfusion (IR) exhibited the characteristic hallmarks of AKI: renal dysfunction, tubular damage, albuminuria, increased oxidative stress, and renal inflammation. In contrast, the KO-Sirt7+IR mice were protected from AKI, exhibiting lesser albuminuria and reduction in urinary biomarkers of tubular damage, despite similar renal dysfunction. The renoprotection in the Sirt7-KO+IR group was associated with reduced kidney weight, minor expression of inflammatory cytokines and less renal infiltration of inflammatory cells. This anti-inflammatory effect was related to diminished p65 expression and in its active phosphorylation, as well as by a reduction in p65 nuclear translocation. Sirt7 deficient mice are protected from AKI, suggesting that this histone deacetylase promotes tubular damage and renal inflammation. Therefore, our findings indicate that Sirt7 inhibitors may be an attractive therapeutic target to reduce NFκB signaling.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Sirtuínas/metabolismo , Injúria Renal Aguda/metabolismo , Albuminúria , Animais , Inflamação/metabolismo , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/metabolismo , Sirtuínas/genética
5.
FASEB J ; 36(3): e22190, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35147994

RESUMO

We demonstrated that serpinA3c/k relocates from the cytoplasm to the apical tubular membrane (ATM) in chronic kidney disease (CKD), suggesting its secretion in luminal space in pathophysiological contexts. Here, we studied serpinA3c/k expression and secretion under different stressful conditions in vitro and in vivo. HEK-293 cells were transfected with a FLAG-tagged serpinA3c/k clone and exposed to H2 O2 or starvation. Both stressors induced serpinA3c/k secretion but with a higher molecular weight. Glycanase treatment established that serpinA3c/k is glycosylated. Site-directed mutagenesis for each of the four glycosylation sites was performed. During cellular stress, serpinA3c/k secretion increased with each mutant except in the quadruple mutant. In rats and patients suffering acute kidney injury (AKI), an atypical urinary serpinA3c/k excretion (uSerpinA3c/k) was observed. In rats with AKI, the greater the induced kidney damage, the greater the uSerpinA3 c/k, together with relocation toward ATM. Our findings show that: (1) serpinA3c/k is glycosylated and secreted, (2) serpinA3c/k secretion increases during cellular stress, (3) its appearance in urine reveals a pathophysiological state, and (4) urinary serpinA3 excretion could become a potential biomarker for AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Estresse Fisiológico , alfa 1-Antiquimotripsina/metabolismo , Injúria Renal Aguda/urina , Animais , Glicosilação , Células HEK293 , Humanos , Masculino , Mutação , Ratos , alfa 1-Antiquimotripsina/genética , alfa 1-Antiquimotripsina/urina
6.
Physiol Rep ; 9(14): e14937, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34291592

RESUMO

Most of the obesity murine models inducing renal injury use calorie-enriched foods, where fat represents 60% of the total caloric supply, however, this strategy doubles the standard proportion of fat ingestion in obese patients. Therefore, it is crucial to study the impact of a high-fat intake on kidney physiology that resembles common obesity in humans to understand the trigger mechanisms of the long-term consequences of overweight and obesity. In this study, we analyzed whether chronic feeding with a moderately high fat diet (MHFD) representing 45% of total calories, may induce kidney function and structural injury compared to C57BL/6 mice fed a control diet. After 14 weeks, MHFD induced significant mice obesity. At the functional level, obese mice showed signs of kidney injury characterized by increased albuminuria/creatinine ratio and higher excretion of urinary biomarkers of kidney damage. While, at the structural level, glomerular hypertrophy was observed. Although, we did not detect renal fibrosis, the obese mice exhibited a significant elevation of Tgfb1 mRNA levels. Kidney damage caused by the exposure to MHFD was associated with greater oxidative stress, renal inflammation, higher endoplasmic reticulum (ER)-stress, and disruption of mitochondrial dynamics. In summary, our data demonstrate that obesity induced by a milder fat content diet is enough to establish renal injury, where oxidative stress, inflammation, ER-stress, and mitochondrial damage take relevance, pointing out the importance of opportune interventions to avoid the long-term consequences associated with obesity and metabolic syndrome.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Nefropatias/etiologia , Nefropatias/patologia , Estresse Oxidativo/fisiologia , Animais , Nefropatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia
7.
Sci Rep ; 11(1): 8769, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888767

RESUMO

Chronic hypoxia is a major contributor to Chronic Kidney Disease (CKD) after Acute Kidney Injury (AKI). However, the temporal relation between the acute insult and maladaptive renal response to hypoxia remains unclear. In this study, we analyzed the time-course of renal hemodynamics, oxidative stress, inflammation, and fibrosis, as well as epigenetic modifications, with focus on HIF1α/VEGF signaling, in the AKI to CKD transition. Sham-operated, right nephrectomy (UNx), and UNx plus renal ischemia (IR + UNx) groups of rats were included and studied at 1, 2, 3, or 4 months. The IR + UNx group developed CKD characterized by progressive proteinuria, renal dysfunction, tubular proliferation, and fibrosis. At first month post-ischemia, there was a twofold significant increase in oxidative stress and reduction in global DNA methylation that was maintained throughout the study. Hif1α and Vegfa expression were depressed in the first and second-months post-ischemia, and then Hif1α but not Vegfa expression was recovered. Interestingly, hypermethylation of the Vegfa promoter gene at the HIF1α binding site was found, since early stages of the CKD progression. Our findings suggest that renal hypoperfusion, inefficient hypoxic response, increased oxidative stress, DNA hypomethylation, and, Vegfa promoter gene hypermethylation at HIF1α binding site, are early determinants of AKI-to-CKD transition.


Assuntos
Metilação de DNA , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/irrigação sanguínea , Regiões Promotoras Genéticas , Insuficiência Renal Crônica/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Injúria Renal Aguda/patologia , Animais , Progressão da Doença , Isquemia/patologia , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo
8.
Am J Physiol Renal Physiol ; 320(5): F734-F747, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33682442

RESUMO

The physiological role of the shorter isoform of with no lysine kinase (WNK)1 that is exclusively expressed in the kidney (KS-WNK1), with particular abundance in the distal convoluted tubule, remains elusive. KS-WNK1, despite lacking the kinase domain, is nevertheless capable of stimulating the NaCl cotransporter, apparently through activation of WNK4. It has recently been shown that a less severe form of familial hyperkalemic hypertension featuring only hyperkalemia is caused by missense mutations in the WNK1 acidic domain that preferentially affect cullin 3 (CUL3)-Kelch-like protein 3 (KLHL3) E3-induced degradation of KS-WNK1 rather than that of full-length WNK1. Here, we show that full-length WNK1 is indeed less impacted by the CUL3-KLHL3 E3 ligase complex compared with KS-WNK1. We demonstrated that the unique 30-amino acid NH2-terminal fragment of KS-WNK1 is essential for its activating effect on the NaCl cotransporter and recognition by KLHL3. We identified specific amino acid residues in this region critical for the functional effect of KS-WNK1 and KLHL3 sensitivity. To further explore this, we generated KLHL3-R528H knockin mice that mimic human mutations causing familial hyperkalemic hypertension. These mice revealed that the KLHL3 mutation specifically increased expression of KS-WNK1 in the kidney. We also observed that in wild-type mice, the expression of KS-WNK1 was only detectable after exposure to a low-K+ diet. These findings provide new insights into the regulation and function of KS-WNK1 by the CUL3-KLHL3 complex in the distal convoluted tubule and indicate that this pathway is regulated by dietary K+ levels.NEW & NOTEWORTHY In this work, we demonstrated that the kidney-specific isoform of with no lysine kinase 1 (KS-WNK1) in the kidney is modulated by dietary K+ and activity of the ubiquitin ligase protein Kelch-like protein 3. We analyzed the role of different amino acid residues of KS-WNK1 in its activity against the NaCl cotransporter and sensitivity to Kelch-like protein 3.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Rim/enzimologia , Proteínas dos Microfilamentos/metabolismo , Potássio na Dieta/metabolismo , Pseudo-Hipoaldosteronismo/enzimologia , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Culina/metabolismo , Estabilidade Enzimática , Feminino , Rim/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Mutação , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Pseudo-Hipoaldosteronismo/genética , Pseudo-Hipoaldosteronismo/fisiopatologia , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/deficiência , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Xenopus laevis
9.
Am J Physiol Cell Physiol ; 320(1): C106-C118, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112643

RESUMO

Serpins are a superfamily of proteins characterized by their common function as serine protease inhibitors. So far, 36 serpins from nine clades have been identified. These proteins are expressed in all the organs and are involved in multiple important functions such as the regulation of blood pressure, hormone transport, insulin sensitivity, and the inflammatory response. Diseases such as obesity, diabetes, cardiovascular diseases, and kidney disorders are intensively studied to find effective therapeutic targets. Given the serpins' outstanding functionality, the deficiency or overexpression of certain types of serpin has been associated with diverse pathophysiological events. In particular, we focus here on reviewing the studies evaluating the participation of serpins, and particularly SerpinA3, in diverse diseases that occur in relevant organs such as the brain, retinas, corneas, lungs, cardiac vasculature, and kidneys. In this review, we summarize the role of serpins in physiological and pathophysiological processes as well as recent evidence on the crucial role of SerpinA3 in several pathologies. Finally, we emphasize the importance of SerpinA3 in regulating cellular processes such as angiogenesis, apoptosis, fibrosis, oxidative stress, and the inflammatory response.


Assuntos
Doença Crônica , Saúde , Serpinas/metabolismo , Animais , Apoptose , Fibrose , Humanos , Inflamação/metabolismo , Neovascularização Fisiológica , Estresse Oxidativo , Transdução de Sinais
10.
Am J Physiol Renal Physiol ; 317(6): F1637-F1648, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31608674

RESUMO

Protein restriction (PR) during pregnancy induces morphofunctional alterations related to deficient nephrogenesis. We studied the renal functional and morphological significance of PR during pregnancy and/or lactation in adult male rat offspring and the repercussions on acute kidney injury (AKI) severity. Female rats were randomly assigned to the following groups: control diet during pregnancy and lactation (CC), control diet during pregnancy and PR diet during lactation (CR), PR during pregnancy and control diet during lactation (RC), and PR during pregnancy and lactation (RR). Three months after birth, at least 12 male offspring of each group randomly underwent either bilateral renal ischemia for 45 min [ischemia-reperfusion (IR)] or sham surgery. Thus, eight groups were studied 24 h after reperfusion: CC, CC + IR, CR, CR + IR, RC, RC + IR, RR, and RR + IR. Under basal conditions, the CR, RC, and RR groups exhibited a significant reduction in nephron number that was associated with a reduction in renal blood flow. Glomerular hyperfiltration was present as a compensatory mechanism to maintain normal renal function. mRNA levels of several vasoactive, antioxidant, and anti-inflammatory molecules were decreased. After IR, renal function was similarly reduced in all of the studied groups. Although all of the offspring from maternal PR exhibited renal injury, the magnitude was lower in the RC and RR groups, which were associated with faster renal blood flow recovery, differential vasoactive factors, and hypoxia-inducible factor-1α signaling. Our results show that the offspring from maternal PR are resilient to AKI induced by IR that was associated with reduced tubular injury and a differential hemodynamic response.


Assuntos
Injúria Renal Aguda/prevenção & controle , Dieta com Restrição de Proteínas , Injúria Renal Aguda/patologia , Animais , Animais Recém-Nascidos , Antioxidantes/metabolismo , Citocinas/metabolismo , Dieta , Feminino , Taxa de Filtração Glomerular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Testes de Função Renal , Túbulos Renais/patologia , Lactação , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Wistar , Circulação Renal , Traumatismo por Reperfusão/prevenção & controle
11.
Sci Rep ; 9(1): 10350, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316093

RESUMO

Recognizing patients at early phases of chronic kidney disease (CKD) is difficult, and it is even more challenging to predict acute kidney injury (AKI) and its transition to CKD. The gold standard to timely identify renal fibrosis is the kidney biopsy, an invasive procedure not usually performed for this purpose in clinical practice. SerpinA3 was identified by high-resolution-mass-spectrometry in urines from animals with CKD. An early and progressive elevation of urinary SerpinA3 (uSerpinA3) was observed during the AKI to CKD transition together with SerpinA3 relocation from the cytoplasm to the apical tubular membrane in the rat kidney. uSerpinA3/alpha-1-antichymotrypsin was significantly increased in patients with CKD secondary to focal and segmental glomerulosclerosis (FSGS), ANCA associated vasculitis (AAV) and proliferative class III and IV lupus nephritis (LN). uSerpinA3 levels were independently and positively associated with renal fibrosis. In patients with class V LN, uSerpinA3 levels were not different from healthy volunteers. uSerpinA3 was not found in patients with systemic inflammatory diseases without renal dysfunction. Our observations suggest that uSerpinA3 can detect renal fibrosis and inflammation, with a particular potential for the early detection of AKI to CKD transition and for the differentiation among lupus nephritis classes III/IV and V.


Assuntos
Injúria Renal Aguda/urina , Insuficiência Renal Crônica/urina , Serpinas/urina , alfa 1-Antiquimotripsina/urina , Adulto , Sequência de Aminoácidos , Animais , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/urina , Biomarcadores/urina , Progressão da Doença , Diagnóstico Precoce , Feminino , Glomerulosclerose Segmentar e Focal/urina , Humanos , Inflamação/urina , Isquemia/urina , Rim/irrigação sanguínea , Nefrite Lúpica/classificação , Nefrite Lúpica/urina , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Pancreatite/urina , Transporte Proteico , Distribuição Aleatória , Ratos , Ratos Wistar , Insuficiência Renal Crônica/diagnóstico , Adulto Jovem , alfa 1-Antitripsina/urina
12.
Sci Rep ; 7(1): 12270, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947737

RESUMO

This study evaluated if there is a sexual dimorphism in the acute kidney injury (AKI) to chronic kidney disease (CKD) transition and the time-course of the potential mechanisms involved in the dimorphic response. Female and male rats were divided into sham-operated or underwent 45-min renal ischemia (F + IR, and M + IR). All groups were studied at 24-h and 1, 2, 3, or 4-months post-ischemia. Additionally, oophorectomized rats were divided into sham or IR groups. After 24-h, AKI extent was simllar in females and males, but female rats exhibited less oxidative stress and increased renal GSH content. After 4-months and despite similar AKI, the M + IR group developed CKD characterized by proteinuria, tubulointerstitial fibrosis, glomerular hypertrophy, increased oxidative stress and a reduction in HIF1α and VEGF from the 1st-month and persisting throughout the time-course studied. Interestingly, the F + IR group did not develop CKD due to lesser oxidative stress and increased eNOS, TGFß and HIF1α mRNA levels from the 1st-month after IR. Whereas, oophorectomized rats did develop CKD. We found a sexual dimorphic response in the AKI to CKD transition. Early antioxidant defense and higher TGFß, HIF1α and eNOS were among the renoprotective mechanisms that the F + IR group demonstrated.


Assuntos
Injúria Renal Aguda/parasitologia , Insuficiência Renal Crônica/patologia , Fatores Sexuais , Animais , Glutationa/análise , Estresse Oxidativo , Ratos
13.
Tissue Eng Part A ; 22(11-12): 850-61, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27174503

RESUMO

Cell therapy in experimental models of Parkinson's disease replaces the lost dopamine neurons (DAN), but we still need improved methods to guide dopaminergic axons (DAx) of grafted neurons to make proper connections. The protein Semaphorin 3C (Sema3C) attracts DAN axons and enhances their growth. In this work, we show that the hydrogel PuraMatrix, a self-assembling peptide-based matrix, incorporates Sema3C and releases it steadily during 4 weeks. We also tested if hydrogel-delivered Sema3C attracts DAx using a system of rat midbrain explants embedded in collagen gels. We show that Sema3C released by this hydrogel attracts DAx, in a similar way to pretectum, which is known to attract growing DAN axons. We assessed the effect of Sema3C on the growth of DAx using microfluidic devices. DAN from rat midbrain or those differentiated from human embryonic stem cells showed enhanced axonal extension when exposed to hydrogel-released Sema3C, similar to soluble Sema3C. Notably, DAN of human origin express the cognate Sema3C receptors, Neuropilin1 and Neuropilin2. These results show that PuraMatrix is able to incorporate and release Sema3C, and such delivery guides and promotes the axonal growth of DAN. This biocompatible hydrogel might be useful as a Sema3C carrier for in vivo studies in parkinsonian animal models.


Assuntos
Axônios/metabolismo , Materiais Biocompatíveis/química , Neurônios Dopaminérgicos/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Neurogênese/efeitos dos fármacos , Semaforinas/farmacologia , Animais , Axônios/efeitos dos fármacos , Diferenciação Celular , Linhagem Celular , Neurônios Dopaminérgicos/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Humanos , Neuropilina-1/metabolismo , Neuropilina-2/metabolismo , Peptídeos/farmacologia , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...